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Abstract

Recently, much attention has been paid to the societal impact
of AI, especially concerns regarding its fairness. A growing
body of research has identified unfair AI systems and pro-
posed methods to debias them, yet many challenges remain.
Heterogeneous Network Embedding (HNE), a popular tech-
nology used in complex network mining, has socially con-
sequential applications such as automated career counseling,
but there have been few attempts to ensure that it will not en-
code or amplify harmful biases, e.g. sexism in the job mar-
ket. To address this gap, in this paper we propose a com-
prehensive set of debiasing methods for fair HNE, including
sampling-based, projection-based, and graph neural network-
based techniques. We systematically study the behavior of
these algorithms, especially their capability in balancing the
trade-off between fairness and prediction accuracy. We evalu-
ate the performance of the proposed methods in an automated
career counseling application where we mitigate gender bias
in career recommendation. Based on the evaluation results on
two datasets, we identify the most effective fair HNE tech-
niques under different conditions.

Introduction
Many real-world social and information networks such as
social networks, bibliographic networks and biological net-
works are heterogeneous in nature (Liu et al. 2016; Zhou et
al. 2007; Xiong et al. 2019). We can model such networks
as Heterogeneous Information Networks (HINs) which con-
tain diverse types of nodes and/or relationships. For exam-
ple, we can model the Twitter social network as an HIN
where the nodes are users or tweets and the links are the
follower/following relations between users and the author-
ing/retweeting relations between a user and a tweet.

To support large-scale heterogeneous network mining,
much attention has recently been paid to representation
learning where each node in a network is automatically
mapped to a dense vector in a low dimensional embed-
ding space which preserves the relationships between nodes
and important structural characteristics of the original net-
works (Fu, Lee, and Lei 2017; Dong, Chawla, and Swami
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2017). Due to its robustness, flexibility and scalability, het-
erogeneous network embedding (HNE) has been widely
used to support diverse network mining tasks such as node
classification (Dong, Chawla, and Swami 2017), link predic-
tion (Wang et al. 2018), community detection (Cavallari et
al. 2017), and recommender systems (Shi et al. 2019).

Despite its popularity, little attention has yet been paid
to the understanding and mitigation of biases toward cer-
tain demographics in HNE, such as gender and racial bi-
ases. As demonstrated in a wide range of recent discover-
ies, machine learning systems trained with human-generated
content (e.g., social media data) frequently inherit or even
amplify human biases in the data (Dastin 2018; Noble
2018; Angwin et al. 2016). For example, word embedding
models, which inspired some of the early work on net-
work embedding such as DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), were shown to exhibit female/male gender
stereotypes to a disturbing extent (e.g., “man is to com-
puter programmer as woman is to homemaker”) (Boluk-
basi et al. 2016). To overcome this, there has been a con-
centrated recent effort in the natural language processing
community (Bolukbasi et al. 2016; Caliskan, Bryson, and
Narayanan 2017; Gonen and Goldberg 2019) on understand-
ing and mitigating the biases in word embeddings. In the net-
work mining community however, not much attention has
been paid to the biases in HNE. Since HNE may encode
harmful societal prejudice, it may cause unintended bias or
unfairness in downstream applications. Therefore, it is im-
portant that we make sure HNE are unbiased and applica-
tions incorporating these embeddings are fair and will not
negatively impact vulnerable people and marginalized com-
munities in our society.

In this paper, we propose a range of fair HNE algorithms,
including sampling-based, projection-based, and graph neu-
ral network-based methods to mitigate demographic bias in
HNE. We systematically study the behavior of these algo-
rithms, especially their capability in balancing the trade-off
between prediction accuracy and fairness.

To evaluate our algorithms, we applied our fair HNE tech-
niques to automated fair career recommendation. Career
counseling plays an important role in many people’s lives.
Unbiased career advice based on an accurate assessment of



one’s interests, skills and personality can help them make
proper career choices. Good career choice in turn can boost
their economic success, social standing, and quality of life.
Biased career counseling however may restrict occupational
opportunities and stunt the career development of disadvan-
taged populations (e.g., girls and minorities) (Alshabani and
Soto 2020).

The main contributions of this work include:

• To the best of our knowledge, this is the first systematic
investigation on measuring and mitigating demographic
bias in heterogeneous information networks. Although
prior work has studied mitigating bias in network embed-
ding (Rahman et al. 2019), they focused on homogeneous
instead of heterogeneous networks.

• We propose a comprehensive suite of de-biasing algo-
rithms ranging from sampling-based, projection-based, to
graph neural network-based techniques to mitigate demo-
graphic biases in HNE.

• We demonstrate the effectiveness of the proposed meth-
ods in mitigating gender bias in automated career coun-
seling on two real world datasets. Our results illuminate
the prediction accuracy vs. fairness trade-off behavior of
these algorithms, providing guidance to practitioners.

The rest of the paper is organized as follows. We start with
a brief survey of related work, followed by a problem state-
ment and the details of the proposed fair HNE algorithms.
In the next section, we discuss the experiments designed
to evaluate the effectiveness of the proposed methods under
various conditions. We conclude the paper by summarizing
the main findings and pointing out some future directions.

Related Work
In this section we survey the research areas relevant to our
paper. First, we summarize the main heterogeneous network
embeddings methods since they are the basis of our debi-
asing algorithms. Next, we survey the general area of fair
machine learning with a special focus on two most relevant
subareas: fair word embeddings and fair homogeneous net-
work embeddings.

Heterogeneous Network Embeddings (HNE)
We categorize the typical HNE methods into two main types.
Task-agnostic HNE methods focus on training a general-
purpose network embedding that can be used to support dif-
ferent network mining tasks. In contrast, task-specific super-
vised HNE methods focus on training network embeddings
that are optimized for a particular final task.

Task-agnostic HNE Task-agnostic HNE methods
normally employ a meta-path guided sampling method to
generate paths. After obtaining meta-paths, typical word em-
bedding algorithms such as word2vec (Mikolov et al. 2013a;
2013b) can be employed on the instantiated meta-path se-
quences to learn HNE. A meta-path is a path consisting
of a sequence of relations defined between different ob-
ject types, which is either specified manually or derived
from additional supervision (Fu, Lee, and Lei 2017;

Dong, Chawla, and Swami 2017; Shi et al. 2018). For
example, a meta-path author write−−−−→ paper

written by−−−−−−−→
author in a bibliographic network represents a co-
authorship relation in a paper.

Task-specific Supervised HNE Graph Neural Networks
(GNNs) can learn HNE with supervision by translating
nodes of a specific type into labels. GNN-based methods are
end-to-end supervised approaches to learn network embed-
dings. GNNs have the ability to aggregate local features, and
to learn highly expressive representations. A comprehensive
survey on GNNs (Wu et al. 2020) shows that the majority of
the current GNNs are designed for homogeneous networks.
Recently, (Zhang et al. 2018) proposed a GNN method to ex-
plore heterogeneous networks. They translated an HIN into
multiple homogeneous networks and applied GNNs to each
homogeneous network and then combined them at the final
layer.

Fair Machine Learning: General Approaches
There is a rising awareness that bias and fairness issues in
machine learning (ML) algorithms can cause substantial so-
cietal harm (Angwin et al. 2016; Buolamwini and Gebru
2018). A concentrated effort in the machine learning com-
munity aims to address this problem. Existing methods on
fair machine learning can be summarized into three general
strategies.

The first strategy employs fairness-aware pre-processing
to adapt the training data, including (a) modifying the val-
ues of sensitive attributes and class labels; (b) mitigating the
dependencies between sensitive attributes and class labels
by mapping the training data to another space (Dwork et al.
2012a; Feldman et al. 2015), and (c) learning a fair represen-
tation of the training data that is independent of the protected
attribute (Zemel et al. 2013; Xie et al. 2017).

The second strategy focuses on employing a fairness-
guided optimization in model training. A fairness objective
is added as a constraint or a regularization term to the exist-
ing optimization objective to enforce fairness. (Calders and
Verwer 2010; Zafar et al. 2017b; 2017a). For example, (Za-
far et al. 2017b) minimizes the covariance between the sen-
sitive attributes and the (signed) distance between feature
vectors and the decision boundary of a classifier.

The third strategy modifies posteriors to satisfy fairness
constraints. For example, (Hardt, Price, and Srebro 2016)
selected a threshold such that the true positive rates of dif-
ferent groups are equal.

Fair Word Embeddings
Word embedding models (Mikolov et al. 2013b) learn a
mapping of each word a text vocabulary to a vector in a
embedding space to encode semantic meaning and syntactic
structures of natural languages. These models are typically
trained using a neural network-based representation learn-
ing algorithm on word co-occurrence data computed from
massive text corpora. Since text data may contain societal
stereotypes such as racism or sexism, word embeddings also



typically inherit or amplify biases present in the data (Boluk-
basi et al. 2016; Caliskan, Bryson, and Narayanan 2017;
Papakyriakopoulos et al. 2020).

The most popular method of debiasing word embeddings
is to project each word embedding orthogonally to the bias
direction (Bolukbasi et al. 2016) followed by a crowd-
sourcing based location correction.

Fair Homogeneous Network Embedding
Fair network embedding is a relatively new area which is
now beginning to be addressed. In an approach related to
ours, (Rahman et al. 2019) modified random walks to learn
fairness aware embeddings. At each step, the algorithm par-
titions neighbors into different groups based on the values of
the sensitive attribute. The system tries to give each group
the same probability of being selected regardless of its size.
The method is applicable only to homogeneous networks,
while this work addresses heterogeneous networks.

Problem Statement
We first describe our problem setting. We assume that
our dataset is a heterogeneous information network G =
(V,E, T,R) with |T | > 1, where V denotes a set of nodes,
E denotes a set of edges, T denotes a set of node types (e.g.,
user, career, and item), and R denotes a set of edge relations
(e.g., a user likes a Facebook page, a user rates a movie, and
a user chooses a career). We also assume a binary protected
attribute a, which pertains to nodes of at least one type (e.g.
gender for the users). An illustrative example of a heteroge-
neous Facebook career network is shown in Figure 1.

We focus on fairness in the general task of link prediction
in heterogeneous information networks, which we illustrate
with an application to career counseling. Our goal is to learn
node embeddings ev for all nodes v ∈ V such that their
use for link prediction on held-out edges leads to accurate
performance, and the system behaves in a fair manner
with regard to the protected demographics a. Fairness
is a complex socio-technical issue. So far many fairness
definitions have been proposed in the AI community. Here
we adopt two of the most widely used AI fairness definitions
and consider their application to link prediction or node
classification in heterogeneous networks, e.g. for career
recommendation.

Demographic Parity Demographic Parity is one of the most
well-known criteria for fairness in machine learning classi-
fiers (Dwork et al. 2012b). It is defined as:

P (ŷ = k|a = 0) = P (ŷ = k|a = 1) ∀k,
where ŷ is a predicted label, y is the ground truth class la-
bel, a is the protected attribute such as gender (here we only
consider binary protected attributes), and k represents the
possible values of the class label y. The extent to which the
demographic parity criterion is violated is measured by a
distance metric between the two conditional distributions,
typically chosen to be the total variation distance (see Eq.
9).

In the case of link prediction in heterogeneous networks,
we adapt the definition by letting P (ŷ|a) be the empirical

Figure 1: An illustrative example of a Facebook career net-
work. Different shapes (colors) indicate different types of
nodes (relationships). Orange line represents “like” relation-
ship. Blue line represents “choose” relationship.

probability of a link between nodes of protected type a
(e.g. female users) and a sensitive node y (e.g. a career
recommendation, such as engineer, doctor, etc). Based
on this definition, in career counseling, to achieve perfect
demographic parity, the probability of recommending a
specific career (e.g, computer science) given a male should
be the same as that given a female.

Equal Opportunity Another popular fairness definition is
equal opportunity (Hardt, Price, and Srebro 2016). It is de-
fined as:

P (ŷ = k|a = 0, y = k) = P (ŷ = k|a = 1, y = k) ∀k .

We adapt this to link prediction in heterogeneous networks
analogously to demographic parity. Based on this definition,
in career counseling, to achieve perfect equal opportunity,
for a subgroup of people who indeed has chosen a particu-
lar career (e.g., in computer science), the probability of the
system to recommend this career given a person is a male
should be the same as that given the person is a female.

Methodology
In this section, we present three classes of fair HIN embed-
ding methods: (1) fairness-aware sampling which extends
existing sampling methods for HIN embedding to mitigate
bias, (2) embedding projection which employs a vector-
space projection operation to reduce biases in the embed-
dings, and (3) supervised learning with a fairness objective,
which employs a graph neural network (GNN) to learn task-
specific network embeddings that optimize both prediction
accuracy and fairness.

To illustrate these algorithms, we use fair career coun-
seling as an example application. We formulate fair career
counseling as a fair link prediction in HIN problem. Here,
the nodes in the HIN includes a user (e.g., a Facebook user
or a movie reviewer), an item (e.g., a Facebook page or a



movie) and a career (e.g., the career concentration or occu-
pation declared by a user). A user node is linked to an item
node via a “like” link, indicating a user’s preference for the
item. A user node can also be linked to a “career” node via
a “choose” link. The goal of automated career recommenda-
tion is to predict whether there should be a link between a
user and a career based on the interests/likes of a user. In the
following, we propose a range of methods for fair HNE.

Fairness-Aware Sampling
To learn embeddings in a heterogeneous network, we often
use meta-paths to guide a random walker to generate traver-
sal paths. A meta-path is a path consisting of a sequence of
relations defined between different node types. For example,
user

choose−−−−→ career
chosen by−−−−−−−→ user represents two

users choosing the same career. After obtaining meta-paths,
we can use a meta-path based heterogeneous network repre-
sentation learning algorithm such as metapath2vec (M2V) to
learn the node embeddings. Specifically, the objective func-
tion of M2V is defined as follows,

argmax
θ

∑
v∈V

∑
t∈T

∑
ct∈Nt(v)

log p(ct|v; θ), (1)

where ct is the context node of type t, Nt(v) denotes node
v’s neighbors which are of type t, and p(ct|v; θ) is com-
monly defined as a softmax function. Here the main differ-
ence between a context node and a neighboring node is that a
context node is a node within a sliding windows along a path
while neighboring nodes are the k-hop nodes from a center
node. The objective function of M2V is similar to that of
word2vec except that M2V is sensitive to the type of a node.

After learning user embeddings and career embeddings,
we then train a multilayer perceptron (MLP) to predict the
career, where the input is a user embedding and the career
embeddings learned by M2V.

Traditional Meta-path Generation A meta-path P is a
path defined on the graph G = (V,E, T,R), and is denoted

in the form of V1
R1−−→ V2

R2−−→ · · · Rl−→ Vl+1. This meta-path
defines a composite relation R = R1 ◦R2 ◦ · · · ◦Rl between
type 1 and type l + 1, where ◦ denotes the composition op-
erator on relations, and Vt denotes all nodes with type t.

Here we show how to use meta-paths to guide heteroge-
neous random walkers. The transition probability at step i is
defined as follows,

P (vi+1|vit) =


1

|Nt+1(vit)|
, (vi+1, vit) ∈ E, φ(vi+1) = t+ 1

0, (vi+1, vit) ∈ E, φ(vi+1) 6= t+ 1

0, (vi+1, vit) 6∈ E
,

(2)
where vit ∈ Vt, and Nt+1(v

i
t) denotes vit’s neighbors which

are of type t+ 1, and φ(·) is a function returning the type of
a node.

We manually define two meta-paths for our career coun-
seling application. career chosen by−−−−−−−→ user

like−−−→ item
liked by−−−−−−→ user

choose−−−−→ career represents two careers

chosen by two different users who like the same item (e.g.,
a Facebook page, or a movie). user like−−−→ item

liked by−−−−−−→
user represents two users like the same item.

Fair Meta-path Generation Assume a is a protected at-
tribute and i is a value of a, gi represents a group of users sat-
isfying a = i. If a is a binary variable. We define gi is an ad-
vantaged group if it includes a larger number of training ex-
amples than the other group (the disadvantaged group). Fair
meta-path generation aims to up-sample the disadvantaged
group with higher probability while down-sample the advan-
taged group. The sampling probability is inversely propor-
tional to the number of users in each group. As the number
of users in the disadvantaged group is less than that in the
advantaged group, the disadvantaged group has higher prob-
ability to be sampled. As a result, the system is less likely to
neglect the disadvantaged group.

Next, we present the details of the algorithm. Fair meta-
path sampling occurs at the step where the current node type
is career (C) and the next node type is user (U ). Assume a is
a protected attribute of a user (e.g., gender or race). To sim-
plify our explanation, we assume a is binary. Based on the
values of a, we can cluster all the users into different groups
(e.g., g0 and g1). The unnormalized transition probability at
step i where t = c and t+ 1 = u is defined as follows:

P (vi+1|viC) =


r

|N(viC ,U,g0)|
, cond, π(vi+1) = g0

r
|N(viC ,U,g1)|

, cond, π(vi+1) = g1

0, (vi+1, viC) ∈ E, φ(vi+1) 6= U

0, (vi+1, viC) 6∈ E,
(3)

where cond is the condition where (vi+1, viC) ∈
E, φ(vi+1) = U , viC ∈ VC , which means the current node
is a career node and the next node is a user node, and
they are connected, and N(viC , U, g0) denotes the neigh-
bors of viC which are of type U and belong to group g0,
and N(viC , U, g1) denotes the neighbors of viC’ which are of
type U and belong to group g1, and φ(·) is a function re-
turning the type of a node, and π(·) is a function returning
the value of the protected attribute(e.g., the gender of a user),
and r is a hyper-parameter that can determine to what extend
the random walker over samples the disadvantaged group
in order to correct bias. Note that if |N(viC , U, g0)| = 0
or |N(viC , U, g1)| = 0, then the corresponding unnormal-
ized probability should be zero. The transition probability in
other conditions remains the same as that in Eq. 2.

Embedding Projection
The second debiasing method is inspired by a recent work on
attenuating bias in word vectors (Dev and Phillips 2019). It
is often used as a post-processing step. We adapt this method
to debias HIN embeddings. Basically, after obtaining net-
work embeddings using any HIN embedding methods, we
can reduce their unfairness by eliminating the effect of a pro-
tected attribute (e.g., gender) in learned user embeddings via
vector projection. The main difference between our method
and the projection method used in (Dev and Phillips 2019) is
the computing of the bias direction in the embedding space.



(Dev and Phillips 2019) computed a “bias direction” for
word embeddings based on the difference in the average em-
beddings of male and female names. In our case, let vgi be
the direction of group gi. We compute vgi by averaging all
the embeddings of the users in group gi,

vgi =
1

ni

eu1 + eu2 + · · ·+ euni

‖eu1 + eu2 + · · ·+ euni
‖
, (4)

where eu1 , eu2 , euni
are the user embeddings of the individ-

uals in gi, and there are ni users in group gi. Assuming the
protected attribute is binary, we can compute the bias direc-
tion vb using

vb = vg0 − vg1 . (5)
.
To reduce bias in user embeddings, we project each users

vector eu orthogonally to the bias direction vb to obtain the
“bias component” of the embedding, which we subtract:

e′u = eu− < eu, vb > vb, (6)

where vb is the bias direction, <,> is the inner product op-
eration, and e′u is the resulting debiased user embedding.

Fairness-Aware Graph Neural Network-based
Learning
In this section, we explore supervised network representa-
tion learning methods, i.e., graph neural networks (GNNs).
The embeddings are optimized for the final task (e.g., ca-
reer prediction). GNNs view the nodes of a specific type as
labels, e.g., career nodes, and remove them from the net-
work, while unsupervised network representation methods
consider them as nodes. While unsupervised network repre-
sentation methods consider career recommendation as link
prediction, GNNs formulates it as node classification. To re-
duce bias, we directly incorporate a fairness objective in ad-
dition to an accuracy-based objective. In the following, we
describe our method to make GNNs based embeddings more
fair.

Graph Neural Networks Graph Neural Network
(GNN) (Kipf and Welling 2017; Hamilton, Ying, and
Leskovec 2017b; Velickovic et al. 2018) is a powerful tool
for graph mining. It has gained increasing popularity in
various applications, including social network, knowledge
graph, recommender system, and biomedical research.

Let G = (V,E) denote a graph with node attributes Xv

for v ∈ V . Given a set of nodes {v1, ..., vn} and its labels
{y1, ..., yn}, the task of graph supervised learning is to learn
a representation vector hv that helps predict the label of the
node v, ŷ = g(hv). GNNs use the graph connectivity as
well as node features to learn a representation vector (i.e.,
embedding) hv for every node v ∈ G. GNNs use a neigh-
borhood aggregation approach, where the representation of
node v is iteratively updated by aggregating the representa-
tions of v’s neighboring nodes. After k iterations of aggrega-
tion, v’s representation captures the structural characteristics
of its k-hop network neighborhood. Formally, the k-th layer
of a GNN is:

hkv = Combine
(
hk−1v , Agg(hk−1v , hk−1u )

)
, (7)

where hv is the representation of node v at the k-th itera-
tion/layer, and u represents neighbors of v, and Combine is
a function such as an MLP network, and Agg is an aggrega-
tion function such as summation that aggregates neighbors
of v. We initialize h0v = Xv . The accuracy loss function of
GNNs is:

Lacc = −
N∑
i

logP (ŷi = yi) . (8)

Fairness Loss There are many fairness definitions. Here
we only consider demographic parity (Dwork et al. 2012b)
and equal opportunity (Hardt, Price, and Srebro 2016).

Given a classifier, N i denotes the number of users in pro-
tected group gi. N i

k denotes the number of samples which
are predicted to be k and are in protected groups gi.N i

k,k de-
notes the number of samples which are predicted correctly
and are in protected group gi.

diffdp =
∑
k

∣∣∣∣N0
k

N0
− N1

k

N1

∣∣∣∣ (9)

diffeo =
∑
k

∣∣∣∣N0
k,k

N0
k

−
N1
k,k

N1
k

∣∣∣∣ (10)

The above counting method cannot be used as a loss func-
tion, because the gradient cannot be back propagated. Hence
we use the probabilistic prediction p(ŷ|x) of the model to
replace the hard count. Hence, we define the fairness-aware
loss for GNN as follows,

Ldp =
∑
k

(∑
x∈D:A=0 P (ŷ = k|x)

N0

−
∑
x∈D:A=1 P (ŷ = k|x)

N1

)2

,

(11)

Leo =
∑
k

(∑
x∈D:A=0,y=k P (ŷ = k|x)

N0
k

−
∑
x∈D:A=1,y=k P (ŷ = k|x)

N1
k

)2

,

(12)

where x denotes a sample, and D denotes the dataset. We
compute two final loss functions in our GNN models. The
first one is a demographic parity based fairness-aware loss
function.

Lacc + λdp ∗ Ldp, (13)
where λdp is a trade-off hyper-parameter. The second one is
an equal opportunity based fairness-aware loss function.

Lacc + λeo ∗ Ldp, (14)

where λeo is a trade-off hyper-parameter.

Experiments
In this section, we study the behavior of the proposed HNE
debiasing methods and their applications in automated ca-
reer counseling. We tested the systems’ performance on two
datasets: a Facebook dataset and a MovieLens dataset.



Dataset Facebook MovieLens

# careers 48 14
# items (FB pages or movies) 99,756 3,677
# users 7,069 4,920
# male users 2,721 3,558
# female users 4,332 1,362
avg users per career 62.81 93.47
avg users per item 14.04 222.40
avg items per user 198.15 166.21

Table 1: Statistics of Facebook and MovieLens datesets.

Datasets
The Facebook dataset used in the study was collected as a
part of the myPersonality project (Kosinski et al. 2015). The
data was collected with an explicit opt-in consent for reuse
for research purposes. To protect privacy, the data was also
anonymized.

The Facebook dataset contains rich information about a
Facebook user such as his/her demographics (e.g., gender),
the Facebook pages he/she likes, and his/her declared ca-
reer concentrations (e.g., English, Computer Science, Psy-
chology). Since Facebook “likes” contain rich information
about a person’s interests and preferences of a wide range of
items/topics (e.g., books, musics, celebrities, brands and TV
shows), they can be used to suggest possible career concen-
trations for a new user.

As the myPersonality dataset is no longer publicly avail-
able, to facilitate research reproduciblity, we employed a
second dataset, the movieLens dataset, which is publically
available. It contains similar information to the Facebook
dataset such as the gender of a movie reviewer, the movies
he/she likes and his/her occupation.

Table 1 shows the statistics of each dataset after we clean
the data. The Facebook network created from the Facebook
dataset consists of 7069 user nodes, 99, 756 item (a.k.a FB
page) nodes, and 48 career nodes. If a user likes a page, a
link is created between the user and the page. If a user de-
clared a career concentration on Facebook, we create a link
between the user and the career concentration.

The MovieLens-1M dataset originally contains 6, 040
users, 3, 900 movies and 19 careers. After we remove some
careers that our system should not recommend such as
“retired,” “unemployed,” and “K-12 student,” the result-
ing MovieLens network consists of 4920 user nodes, 3677
movie nodes, and 14 career nodes. Similarly, we add a link
between a user and a movie if a user rated a movie. If a user
has declared an occupation, we also add a link between the
user and the occupation.

In both datasets, each user only has one career. In the
Facebook dataset, the gender of a few users is missing, while
all users in MovieLens have gender information.

Since our datasets are not very large, to fully utilize our
ground truth data, we employed nested cross validation for
model training, testing and hyper-parameter tuning. Specif-
ically, we first split the whole dataset into two parts, where
40% of the data were used for embeddings training, and the

remaining 60% were used for career prediction. For the data
reserved for career prediction, we split it further into three
folds, with one of the folds for testing, and the other two
folds for training and validation. We further split the train-
ing and validation data into four folds with one of the folds
as a validation set, and the other three folds for training. The
proportion of embeddings training, training, validation, and
test was 4:3:1:2.

For GNN based methods, to facilitate result comparison,
the test sets were the same as those used in the sampling-
based methods. Since GNNs do not need any data to train
HNE first, the data for embeddings training (i.e., 40% of the
entire data) was added into the training and validation data,
so the proportion of training, validation, and test was 7:1:2.

Experimental Setup
We have implemented a total of 8 different methods. Among
them, two are traditional HIN embedding methods without
gender debiasing (M2V and GNN), and the rest are fair HIN
embedding methods. Among the six fair HIN embedding
methods, one is a naive baseline (called balance data), which
can be used as a pre-processing step. The rest of the methods
employ a single or a combination of the debiasing methods
we proposed. The details of each method is described below.

Balance data: For each career, we randomly remove users
from the advantaged group so that we have an equal number
of male and female users in the embedding training data. In
this way, we deliberately create a balanced dataset to remove
gender bias. Note that only the embeddings’ training dataset
is balanced. The other datasets remain the same to facilitate
result comparison. After creating a balanced dataset, we use
M2V to predict career choices.
M2V: we use the traditional meta-path generation algorithm
in Eq 2 to generate paths, and learn user embeddings and
career embeddings using metapath2vec algorithm (Dong,
Chawla, and Swami 2017). M2V + fair sampling: we
use fair meta-path generation algorithm shown in Eq 3 to
generate paths, and the rest of the processes are the same as
M2V.

Projection: we calculate the bias direction using Eq. 5 and
subtract the component of the embedding in the bias direc-
tion. All sampling-based methods can use the projection
method as a post-processing step.

GNNs: we use the GraphSaint algorithm (Zeng et al. 2019),
a state-of-art GNN algorithm to predict career. We have also
tried GraphSAGE (Hamilton, Ying, and Leskovec 2017a).
However, the results were much worse than GraphSaint. So
in this paper, we only report the results from GraphSaint.

GNN-demographic-parity: we combine the demographic-
parity based fairness loss with an accuracy loss (Eq. 13) to
train the GraphSaint model (Zeng et al. 2019).
GNN-equal-opportunity: we combine the equal-
opportunity based fairness loss with an accuracy loss
(Eq. 14) to train the GraphSaint model (Zeng et al. 2019).



For the non-GNN based methods above, after we learn the
HNE, we train a multilayer perceptron (MLP) to predict the
career. The inputs to the MLP are the user embeddings and
the career embeddings learned by M2v. Since the output of
the softmax layer in MLP is a probability distribution and
each candidate career has a probability of being chosen, we
rank all career candidates based on its probability.

For all sampling-based methods, we used the same hyper-
parameters listed below. The dimension of embeddings was
128; the size of negative samples was 5; the context window
size was 5. For all the GNN-based methods, we used two
convolutional layers. The dimension of the hidden layer is
128. The features of nodes are generated using the following
procedure. Each Facebook page or movie is associated with
a title/description. We average the word embeddings of all
the words in the text as its features. For each user, we average
the features of all the linked items (e.g., FB page or movie)
as his/her features. For each career, we average the features
of all the linked users as its features. The dimension of the
features was 50.

Model Selection
Many of the methods used in our experiment have hyper-
parameters that we can tune. For M2V, we tune the number
of walks and the length of each walk. For M2V + fair sam-
pling, we tune the number of walks, the length of a walk
and the ratio r in (Eq. 3). The range of the number of walks
and the length of each walk are {10, 20, · · · , 190, 200}. For
the projection method, the hyper-parameters are the same
as M2V or M2V + fair sampling. For GNN-demographic-
parity and GNN-equal-opportunity, the hyperparameters are
λdp and λeo respectively.

We use Bayesian optimization to tune hyper-parameters.
For M2V and GNN, the loss function defined in Bayesian
optimization is the negative mean reciprocal rank (MRR).
The Bayesian optimization algorithm aims to select a hyper-
parameter combination with a low loss value.

For M2V+fair sampling, M2V+projection, and M2V +
fair sampling + projection, the loss function defined in
Bayesian optimization is (1) demographic parity + equal
opportunity if MRR is within 95% of the MRR of M2V;
(2) demographic parity + equal opportunity − 100 ∗MRR,
if MRR is out of 95% of the MRR of M2V. The motiva-
tion of the loss function design is that if the model has less
than 5% MRR lose, we neglect the MRR loss and encourage
the system to find hyper-parameters that optimize fairness.
Otherwise, we consider both MRR and fairness loss when
searching for the best model.

We used grid search to tune hyper-parameters for GNN-
based methods, where λdp, λeo ∈ {10, 20, · · · , 190, 200}
and the search step size was 10.

Evaluation Metrics
We use one prediction accuracy measure and two fairness
measures to assess the performance of all the methods.

Accuracy Measure: we use Mean Reciprocal Rank (MRR)
as the measure of prediction accuracy. It is a statistical mea-
sure for evaluating an ordered list of items. MRR is com-

puted as the mean of the multiplicative inverse of the rank of
the correct answers. MRR is frequently used in information
retrieval and recommender systems to assess the system out-
put. To compute MRR, let ri denote the rank of the ground
truth (i.e, user i’s career choice), and N denote the number
of samples. Then MRR = 1

N

∑N
i 1/ri.

Fairness Measures: we use two widely used fairness mea-
sures in our evaluation: Demographic Parity and Equal Op-
portunity, which are defined in Eq. 9 and Eq. 10.

Experimental Results
To study the performance of different fair HNE algorithms,
especially their ability to balance the tradeoff between pre-
diction accuracy and the fairness, we plot the results on the
test datasets in Figure 2(a)-2(d). The Y-axis of each chart
represents a fairness measure (either demographic parity in
Figure 2(a) and 2(c) or equal opportunity in Figure 2(b)
and 2(d)), while the X-axis represents the prediction accu-
racy (MRR). Since some algorithms such as M2V and fair
GNN approaches (e.g., GNN-Demograpic parity and GNN-
Equal opportunity) have hyper-parameters that can be tuned
to achieve different fairness and accuracy tradeoffs, we show
the Pareto frontier of each method which consists of mod-
els that are not dominated by other alternatives from that
method. We say that a model A dominates an alternative
model B if model A outscores model B regardless of the
trade-off between fairness and accuracy – that is, if A is bet-
ter than B in both fairness and accuracy.

As shown in these charts, the traditional GNN method
(represented as the black star in the charts) has relatively
good MRR but poor fairness as it only tries to optimize pre-
diction accuracy. The second baseline method that employs
a naive data balancing technique to remove bias (represented
as the black square in the charts) achieved moderate pre-
diction accuracy as well as moderate fairness. The balance
data model performed better on the MovieLens dataset than
on the Facebook dataset because the Facebook dataset is
more biased and thus a lot of data has to be removed from
the advantaged group to achieve balance. Among the rest
of the models, some methods such as the traditional sam-
pling method (represented by the green crosses) and the
fair sampling method (represented by red dots) are capa-
ble of achieving high MRR at the cost of low fairness (for
both demographic parity and equal opportunity, the lower
the value is, the more fair it is). Other methods, such as
GNN-demographic parity/equal opportunity (represented by
the blue dots/blue diamonds in the charts) and a combination
of fair sampling and projection-based methods can achieve
the best fairness and a reasonably good prediction accuracy.

To further illustrate each model’s ability in balancing the
tradeoff between accuracy and fairness and facilitate model
comparison, we fixed the fairness dimension and only com-
pare the prediction accuracy of these models. We choose
three reference fairness thresholds to illustrate model perfor-
mance under three conditions: high fairness (HF), medium
fairness (MF) and low fairness (LF). The HF condition sim-
ulates a real world scenario where a system is used in mak-
ing consequential decisions (e.g., sentencing). Thus under
this condition, we may want to choose a model with high



(a) MRR vs demographic parity on Facebook (b) MRR vs equal opportunity on Facebook

(c) MRR vs demographic parity on MovieLens (d) MRR vs equal opportunity on MovieLens

Figure 2: The Pareto front of each method to demonstrate the accuracy and fairness tradeoff.

fairness. The low fairness condition simulates a real world
scenario where the fairness of a system is not consequential
(e.g., for entertainment).

The reference fairness thresholds were chosen based on
the three baseline systems: traditional GNN, balance data,
and traditional sampling. Since traditional GNN performed
poorly on the fairness dimension, we use its fairness per-
formance as the threshold to simulate the LF condition. In
addition, since the balance data model normally achieves
moderate fairness, we use its fairness performance as the
threshold to simulate the MF condition. The high fairness
(HF) threshold was obtained based on the traditional sam-
pling method. We use the performance of its fairest model
(the lowest green crosses) as the reference. Once we select
the three fairness thresholds, we report the performance of
the model with the highest MRR among all the models sat-

isfying the fairness constraint.
As shown in Table 2, on the Facebook dataset, if under

the LF condition, traditional methods without any debiasing
such as M2V and GNN performed quite well. This is not sur-
prising since the LF condition puts relatively little fairness
constraints on the systems. Thus systems that totally ignore
the fairness constraints (e.g., M2V and GNN) performed
quite well. Under the HF condition, these two systems are
among the worst performers. Some of the projection-based
fair HNE methods such as M2V+projection, m2V+fair sam-
pling+projection and GNN-based debiasing methods (e.g.,
GNN-demographic-parity) performed the best. Under the
MF condition, again the projection-based debiasing method
(e.g.,M2v+projection, M2V+fair sampling+ prjection) and
the GNN-based debiasing methods (e.g., GNN-demographic
parity) performed the best. In summary, the project-based



Method dpLF dpMF dpHF eoLF eoMF eoHF

balance data 0.2964 0.2964 – 0.2964 0.2964 0.2964
M2V 0.3467 0.2815 0.2815 0.3100 0.2885 –
M2V + fair sampling 0.3364 0.3003 0.3009 0.3373 0.3178 0.3003

M2V + projection 0.3222 0.3222 0.3222 0.3250 0.3220 0.3016
M2V + fair sampling + projection 0.3312 0.3296 0.3260 0.3273 0.3153 0.2982

GNN 0.3341 – – 0.3341 – –
GNN-demographic-parity 0.3262 0.3262 0.3262 0.3262 0.3262 0.3262
GNN-equal-opportunity 0.3300 0.3254 0.3190 0.3300 0.3300 0.3300

Table 2: Comparison of different HNE methods for career prediction using the Facebook network. Mean Reciprocal Rank
(MRR) is reported under different demographic parity (dp)/equal opportunity (eo) constraints. Here, LF, MF, and HF represent
the low fairness, medium fairness and high fairness conditions. Bold-faced numbers highlight the top 3 performers under each
condition.

Method dpLF dpMF dpHF eoLF eoMF eoHF

balance data 0.4147 0.4147 – 0.4147 0.4147 –
M2V 0.4125 0.4122 0.3744 0.4115 0.4125 0.4035
M2V + fair sampling 0.4055 0.4055 0.3946 0.4055 0.4055 0.3971

M2V + projection 0.4049 0.4049 0.3891 0.4049 0.4049 0.3988
M2V + fair sampling + projection 0.4081 0.4067 0.3908 0.4081 0.4081 0.4116
GNN 0.4105 – – 0.4105 – –
GNN-demographic-parity 0.3916 0.3916 0.38963 0.3916 0.3916 0.38992
GNN-equal-opportunity 0.3921 0.3921 0.39025 0.3921 0.3911 0.39025

Table 3: Comparison of different HNE methods for career prediction using the MovieLens network. Mean Reciprocal Rank
(MRR) is reported under different demographic parity (dp)/equal opportunity (eo) constraints. Here, LF, MF, and HF represent
the low fairness, medium fairness and high fairness conditions. Bold-faced numbers highlight the top 3 performers under each
condition.

and GNN-based debiasing methods performed quite well
under both MF and HF conditions.

The results on the MovieLens dataset are slightly differ-
ent. First, the baselines models such as M2V, balance data
and GNN performed quite well under the LF condition. Both
M2V and “balance data” also performed quite well under
the MF condition. Under the HF condition, the projection-
base method M2v+Fair sampling+projection consistently
performed well regardless the fairness measures used.

As a summary, based on results on both the Facebook
and the MovieLens dataset, GNN or M2V-based traditional
embedding methods should be used if under the LF condi-
tion. Under the HF condition, project-based methods, such
as M2V+projection or M2V+fair sampling +projection, con-
sistently performed well. They also performed quite well un-
der the MF condition.

Conclusion
Heterogeneous Network Embedding (HNE) is a popular
technology that has been widely used in complex network
mining. So far, little attention has been paid to the biases in
HNE as well as its potential impact to downstream appli-
cations. Our research represents a first effort to address this
issue. In this paper, we systematically investigated a wide

range of HNE debiasing algorithms, ranging from sampling-
based, projection-based, to graph neural network-based ap-
proaches. We evaluated the effectiveness of these methods
in an automated career counseling task where we mitigate
harmful gender bias in career recommendation. Based on
the evaluation results on two datasets, we identified differ-
ent algorithms that are effective under different conditions,
which provides valuable guidance to practitioners.

References
Alshabani, N., and Soto, S. 2020. Early 20th-century career
counseling for women: Contemporary practice and research
implications. Career Development Quarterly 68(1):78 – 93.
Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016.
Machine bias: There’s software used across the country
to predict future criminals. and it’s biased against blacks.
ProPublica, May 23.
Bolukbasi, T.; Chang, K.-W.; Zou, J. Y.; Saligrama, V.; and
Kalai, A. T. 2016. Man is to computer programmer as
woman is to homemaker? debiasing word embeddings. In
NeurIPS, 4349–4357.
Buolamwini, J., and Gebru, T. 2018. Gender shades: Inter-
sectional accuracy disparities in commercial gender classifi-
cation. In FAT, 77–91.



Calders, T., and Verwer, S. 2010. Three naive bayes ap-
proaches for discrimination-free classification. Data Mining
and Knowledge Discovery 21(2):277–292.
Caliskan, A.; Bryson, J. J.; and Narayanan, A. 2017. Se-
mantics derived automatically from language corpora con-
tain human-like biases. Science 356(6334):183–186.
Cavallari, S.; Zheng, V. W.; Cai, H.; Chang, K. C.-C.; and
Cambria, E. 2017. Learning community embedding with
community detection and node embedding on graphs. In
CIKM, 377–386.
Dastin, J. 2018. Amazon scraps secret AI recruiting tool
that showed bias against women. Reuters.
Dev, S., and Phillips, J. 2019. Attenuating bias in word
vectors. arXiv preprint arXiv:1901.07656.
Dong, Y.; Chawla, N. V.; and Swami, A. 2017. metap-
ath2vec: Scalable representation learning for heterogeneous
networks. In KDD, 135–144. ACM.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012a. Fairness through awareness. In ITCS, 214–226.
ACM.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012b. Fairness through awareness. In ITCS, ITCS ’12,
214–226. Association for Computing Machinery.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In KDD, 259–268. ACM.
Fu, T.-y.; Lee, W.-C.; and Lei, Z. 2017. Hin2vec: Explore
meta-paths in heterogeneous information networks for rep-
resentation learning. In CIKM, 1797–1806. ACM.
Gonen, H., and Goldberg, Y. 2019. Lipstick on a pig:
Debiasing methods cover up systematic gender biases in
word embeddings but do not remove them. arXiv preprint
arXiv:1903.03862 609–614.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017a. Inductive
representation learning on large graphs. In NeurIPS, 1024–
1034.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017b. Rep-
resentation learning on graphs: Methods and applications.
IEEE Data Engineering Bulletin 40(3):52–74.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of op-
portunity in supervised learning. In NeurIPS, 3315–3323.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks.
Kosinski, M.; Matz, S. C.; Gosling, S. D.; Popov, V.; and
Stillwell, D. 2015. Facebook as a research tool for the social
sciences: Opportunities, challenges, ethical considerations,
and practical guidelines. American Psychologist 70(6):543.
Liu, M.; Liu, S.; Zhu, X.; Liao, Q.; Wei, F.; and Pan, S. 2016.
An uncertainty-aware approach for exploratory microblog
retrieval. IEEE Transactions on Visualization and Computer
Graphics 22(1):250–259.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In NeurIPS, 3111–3119.
Noble, S. 2018. Algorithms of Oppression: How Search
Engines Reinforce Racism. NYU Press.
Papakyriakopoulos, O.; Hegelich, S.; Serrano, J. C. M.; and
Marco, F. 2020. Bias in word embeddings. In FAT, 446–457.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD, 701–710.
Rahman, T.; Surma, B.; Backes, M.; and Zhang, Y. 2019.
Fairwalk: towards fair graph embedding. In IJCAI, 3289–
3295.
Shi, Y.; Gui, H.; Zhu, Q.; Kaplan, L.; and Han, J. 2018. As-
pem: Embedding learning by aspects in heterogeneous in-
formation networks. In ICDM, 144–152. SIAM.
Shi, C.; Hu, B.; Zhao, W. X.; and Yu, P. S. 2019. Hetero-
geneous information network embedding for recommenda-
tion. IEEE Transactions on Knowledge and Data Engineer-
ing 31(2):357–370.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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